# 143. Kobalt-katalysierte Cycloadditionen von Alkinen und Nitrilen zu Pyridinen: Ein neuer Zugang zu Pyridoxin (Vitamin B<sub>6</sub>)

von Rudolf E. Geiger, Michel Lalonde, Hansjörg Stoller und Kuno Schleich\* Zentrale Forschungseinheiten der F. Hoffmann-La Roche & Co. AG, CH-4002 Basel

(25.V.84)

# Cobalt-Catalyzed Cycloaddition of Alkynes and Nitriles to Pyridines: A New Route to Pyridoxine (Vitamin B<sub>6</sub>)

## Summary

A new synthesis of pyridoxine hydrochloride (1) based on a Co-catalyzed cycloaddition of MeCN with substituted di(2-propynyl) ethers (3 and 16) is described. The reaction sequences following cycloaddition and leading to 1 involve as key steps the rearrangement of the pyridine-N-oxide 6 to the 3-hydroxypyridine 7 with  $Ac_2O$  and a modified *Curtius* rearrangement of the acid 19 and subsequent diazotation and hydrolysis to the same pyridoxine precursor 7, respectively. The intermediate 7 is transformed to 1 by well-known procedures.

1. Einführung. – Die Co-katalysierte [2 + 2 + 2]-Cycloaddition von drei Alkinen führt zu Benzolringen mit definiertem Substitutionsmuster [1] [2]. Ersetzt man eines der Alkine durch ein Nitril, so kann man mit dieser Reaktion Pyridinringe aufbauen [3-5].

Wir untersuchten die Co-katalysierte Pyridinsynthese mit dem Ziel, Pyridine mit schwer zugänglichem Substitutionsmuster herzustellen und insbesondere eine neue Synthese für Pyridoxin (1) zu finden!). Das Synthesekonzept wurde so festgelegt, dass MeCN mit einem Diin, dessen Dreifachbindungen durch eine geeignete Brücke verbunden sind, kombiniert werden sollte (Schema 1). Die Brücke sollte nach erfolgter Cyclisierung wieder leicht geöffnet werden können. Zwei Varianten der Realisierung dieses Konzeptes werden im folgenden beschrieben.

#### Schema 1

<sup>1)</sup> Eine zusammenfassende Darstellung über bisherige Synthesemethoden für Pyridoxin findet sich in [11].

#### Schema 2

2. Ergebnisse. – 2.1. [2 + 2 + 2]-Cycloaddition mit einem symmetrischen Diin. Dieser Syntheseweg (Schema 2) hat als Schlüsselschritt die Cycloaddition von MeCN mit dem symmetrisch disilylierten Propargyläther 3. Zur Herstellung dieses Substrates wird Dipropargyläther (2; nach bekannter Methode [6] aus Propargylalkohol und Propargylbromid hergestellt) mit EtMgBr und Me<sub>3</sub>SiCl zu 3 umgesetzt. Dieses Diin reagiert mit MeCN (als Reagens und Lösungsmittel) unter Katalyse von Kobaltocen (Dicyclopentadienylkobalt, [CoCp<sub>2</sub>])<sup>2</sup>) in einer exothermen Druckreaktion mit guter Ausbeute (73%)<sup>3</sup>) zum Pyridinderivat 4, das bereits in AcOH die α-ständige Me<sub>3</sub>Si-Gruppe verliert und in das kristalline AcOH-Addukt 5<sup>4</sup>) übergeht (Ausbeute 53% bzgl. 3). Ein

Schema 3

2 Me<sub>3</sub>Si = 
$$=$$
  $=$  COOR  $=$  Cocp(CO)<sub>1</sub>, CH,CN  $=$  R= H: 15
R= E1: 16

E(OOC  $+$  SiMe<sub>3</sub>  $=$   $=$  COOR  $=$  ROOC  $=$  R= H: 18
R= E1: 18
R= E1: 18
R= t - C<sub>4</sub> H<sub>9</sub>OCO: 20
R= H: 21 (als Hydrochlorid)

Me<sub>3</sub>Si  $+$  COOEI

22 23 24

<sup>&</sup>lt;sup>2</sup>) Dicarbonyl(cyclopentadienyl)kobalt ([CoCp(CO)<sub>2</sub>]) sowie andere von Bönnemann [4] erwähnte Co-Verbindungen können ebenfalls verwendet werden.

<sup>3)</sup> Die Reinheit des Diins ist entscheidend für die Ausbeute und Geschwindigkeit der Cycloaddition.

<sup>4)</sup> Addukt 5 kann durch Luftsauerstoff zu den isomeren Lactonen 11 und 12 oxidiert werden.

Nebenprodukt der Cycloaddition ist das durch Aromatisierung von drei Alkingruppen gebildete Dimer 10, doch kann seine Bildung durch Verwendung eines grossen Überschusses an MeCN stark zurückgedrängt werden (auf ca. 1%).

Das Pyridinderivat 5 wird mit m-Chlorperbenzoesäure ins N-Oxid 6 übergeführt, das in Analogie zur bekannten Reaktion von 2-Methylpyridin-N-oxid mit  $Ac_2O$  [7] und anschliessender Hydrolyse direkt zur bereits beschriebenen Pyridoxin-Vorstufe 7 [8] umgesetzt werden kann (Ausbeute 17%). Ein Nebenprodukt dieser Reaktion ist das 2-(Hydroxymethyl)pyridin-Derivat 13 (8%), das vermutlich kein Zwischenprodukt für 7 ist, sondern in einer Parallelreaktion entsteht. Die Öffnung des Dihydrofuran-Ringes in 7 mit HBr zum Dibromid 8 sowie die Bildung von Pyridoxin-triacetat (9; Reinigung durch Destillation) und saure Hydrolyse zu Pyridoxin-hydrochlorid (1) wurden nach bekannten Vorschriften [8] [9] durchgeführt. Die Gesamtausbeute an 1 beträgt nach dem beschriebenen Verfahren etwa 3 bis 4% (bzgl. 3); die Ausbeuten der Einzelstufen, mit Ausnahme der Stufe  $6 \rightarrow 7$  (17%), betragen durchwegs 70% und mehr.

2.2. Regioselektive [2+2+2]-Cycloaddition mit einem unsymmetrischen Diin. Der Schlüsselschritt dieses Syntheseweges (Schema 3) ist die Cycloaddition von MeCN mit dem Propargyläther 16. Die Herstellung des unsymmetrischen Diins 16 erfolgt wiederum aus Dipropargyläther 2, der mit 1 Äquiv. BuLi und anschliessender Silylierung zum monosubstituierten Propargyläther 14 umgesetzt wird<sup>5</sup>). Durch Reaktion mit EtMgBr und CO<sub>2</sub> entsteht die Carbonsäure 15, die mit EtOH zu 16 verestert wird.

Die Cycloaddition mit 16 erfolgt im Überschuss MeCN unter Druck mit [CoCp (CO)<sub>2</sub>] als Katalysator<sup>6</sup>). Diese Reaktion verläuft mit hoher Regioselektivität bezüglich des gewünschten Pyridins 17 (Verhältnis 17/22 = 16:1). Die Desilylierung von 17 (nicht isoliert) zum 3-Pyridincarbonsäureester 18 tritt in Gegenwart von Fluorid-Ionen ein (Ausbeute 68% bzgl. 16). Die Herstellung der Pyridoxin-Vorstufe 7 aus 18 erfolgt mittels bekannter Reaktionen: Verseifung zur Carbonsäure 19, modifizierte *Curtius*-Umlagerung von 19 mit Diphenoxyphosphorylazid (vgl. [10]) in *tert*-Butylalkohol zum Carbamat 20 (als Nebenprodukt trat das Harnstoffderivat 23 auf), saure Hydrolyse zum Amin-hydrochlorid 21, Diazotierung und Verkochen zur 3-Hydroxyverbindung 7 und der Chlorverbindung 24 als Nebenprodukt. Erstere wird wie unter 2.1 zu 1 weiterverarbeitet. Bei dieser Pyridoxin-Synthese beträgt die Gesamtausbeute knapp 7% (bzgl. 16).

Für die Aufnahme und Interpretation der Spektren und für die Mikroanalysen danken wir den Herren Dr. W. Arnold (NMR), Dr. L. Chopard (IR), Dr. W. Vetter und W. Meister (MS) sowie Dr. A. Dirscherl (Mikroanalysen). Für Arbeiten in Speziallaboratorien danken wir den Herren Dr. K. Steiner und R. Siegenthaler (Hydrier- und Drucklaboratorien) sowie Dr. H.-P. Wagner und E. Schmidlin (Kilolaboratorien).

<sup>5)</sup> Es entsteht ein (3:2)-Gemisch von 14 und 3, das sich destillativ trennen lässt.

<sup>6) [</sup>CoCp2] sowie andere von Bönnemann [4] erwähnte Co-Verbindungen können ebenfalls verwendet werden.

#### **Experimenteller Teil**

Unter Mitarbeit der Herren Hans-Rudolf Bütler, Markus Christ, Simon Linder, Aldo Salviti und Roland Witschard

Allgemeines. Alle Reaktionsgefässe wurden mit N2 begast. Die grossen Ansätze wurden in Mehrhalsrundkolben (Glas) bis zu 20 1 Inhalt durchgeführt. Die Druckreaktionen erfolgten in einem 5-1-Rührautoklaven (CrNiMo-Stahl Werkstoff 1.4580, Widerstandsthermometer Pt 100, Manometer, Überdruckventil für 300 bar, Ventile für Gasdosierung und Probenahmen). Für die Extraktionen der grossen Ansätze wurden Ausrührgefässe mit bis zu 20 l Inhalt benutzt. Org. Extrakte wurden über wasserfreiem Na<sub>2</sub>SO<sub>4</sub> getrocknet und nach Filtration im Rotationsverdampfer (i. RV.) bei 30-40°/15-20 Torr eingedampft (grosse Mengen im Umlaufverdampfer (Cyclon)). Die wasserfreien Lösungsmittel wurden durch Trocknen der käuflichen Lösungsmittel (Merck; p.a.) über Molekularsieb 4 Å (Perlform; Merck) gewonnen. Die Schmp. sind unkorrigiert. Chromatographie: Dünnschichtchromatographie (DC) mit DC-Fertigplatten Kieselgel 60 F<sub>254</sub> (Merck); Säulenchromatographie mit Kieselgel 60 (0,063-0,200 mm; Merck). Gas-Chromatogramme (GC) wurden am Gerät Sigma 1B (Perkin-Elmer) aufgenommen, Trägergas N<sub>2</sub>, FID, elektronische Integration, Angaben in Flächenprozent, Injektortemp. 220°, Detektortemp. 250°, Säulentemp. programmiert je nach Probe von 50-220° oder 100-220°, Temperaturanstieg 8°/Min. IR-Spektren: Nicolet 7199 FT oder Beckman IR-9; Angaben in cm $^{-1}$ , w = schwache, m = mittlere, s = starke Absorption. Massenspektren (MS): An drei verschiedenen Geräten A (MM 7070 F mit Datasystem 2050; Vacuum Generators, Altrincham, GB), B (MS 9; AEI, Manchester, GB) und C (MS 9/ZAB (updated) mit Datasystem SS 200; Vacuum Generators und Finnigan/MAT, Bremen, D); Verdampfung direkt in die Ionenkammer, Ionenquellentemp. 220-250°, Ionisierungsenergie 70 eV; Spektren mit Chemischer Ionisation (CI): Reaktionsgas NH<sub>3</sub> (1 Torr). Die <sup>1</sup>H-NMR-Spektren wurden bei 60 MHz (Varian A-60 D oder EM-360), 80 MHz (WP 80 CW, Bruker Spectrospin) und 90 MHz (HX-90/15 FT, Bruker Spectrospin; mit Aspect-2000-Computer (24 Bit, je 16 K Daten- und Rechenspeicher)) gemessen. Chemische Verschiebungen ( $\delta$  in ppm) mit TMS als internem Standard; Kopplungskonstanten J in Hz.

- 1. Di(2-propinyl) äther (2) [6]. Eine Lösung von 2130 g (38,0 mol) 2-Propinol (Riedel de Haën) in KOH-Lösung (2660 g 85proz. KOH-Plätzchen (Merck) in 12,6 1 H<sub>2</sub>O) wurde bei 40° langsam mit 4520 g (38,0 mol) 2-Propinylbromid (Fluka) versetzt, das sich als untere Phase abschied. Unter heftigem Rühren wurde 2 Std. unter Rückfluss erhitzt. Nach Abkühlen auf RT. wurde das Produkt (obere Phase) abgetrennt und die H<sub>2</sub>O-Phase zuerst mit 3 l, dann mit 2 l Et<sub>2</sub>O extrahiert. Die vereinigten org. Phasen wurden mit 1 l 2N NaOH und mit 1 H<sub>2</sub>O gewaschen und getrocknet. Zur Verhinderung der Peroxidbildung wurden je 0,1 g 3-(tert-Butyl)-4-hydroxyanisol (BHA) und 2,6-Di(tert-butyl)-p-kresol (BHT) zugegeben. Nach Eindampfen i. RV. wurde das Produkt direkt i. RV. bei ca. 45°/10−15 Torr destilliert. Dabei wurden 2615 g 2 (73%) als klare farblose Flüssigkeit erhalten<sup>7</sup>). GC (5% Carbowax 20 M, 50−220°): 97% 2. IR (Film): 3304w (≡CH), 2118w (C≡CH), 1086s (C−O−C). ¹H-NMR (60 MHz, CDCl<sub>3</sub>): 2,50 (t, J = 1,0, 2H, 2≡CH); 4,27 (d, J = 1,0, 4H, 2 CH<sub>2</sub>). MS (B): 93 (2, M + −H), 65 (42), 64 (76), 40 (51), 39 (100). Anal. ber. für C<sub>6</sub>H<sub>6</sub>O (94,11): C 76,57, H 6,43; gef.: C 76,15, H 6,44.
- 2. Bis[3-(trimethylsilyl)-2-propinyl]äther (3). EtMgBr in THF (hergestellt durch Zugabe von 1560 g (14,3 mol) EtBr in 1500 ml THF zu 341 g (14,0 mol) Mg-Spänen in 1500 ml THF) wurde unter Kühlen ( $\leq$  40°) langsam mit einer Lösung von 660 g (7,01 mol) 2 in 3000 ml THF versetzt, dann wurde 1 Std. bei 40° gerührt. Darauf wurden 1554 g (14,3 mol) Me<sub>3</sub>SiCl (Fluka) in 3000 ml THF langsam so zugetropft, dass die Temp. nicht über 40° anstieg. Dann wurde 1 Std. unter Rückfluss erhitzt, auf RT. abgekühlt und über Nacht gerührt. Nun wurden unter intensivem Rühren und Kühlen 2600 ml H<sub>2</sub>O zugetropft ( $\leq$  20°), die org. (obere) Phase wurde abgetrennt und die H<sub>2</sub>O-Phase noch mit 2000 ml THF extrahiert. Die vereinigten org. Phasen wurden mit 1000 ml ges. NaCl gewaschen, getrocknet und nach Eindampfen i. RV. (90°) i. HV. über eine Vigreux-Kolonne destilliert. Bei ca. 90°/0,001 Torr gingen 1372 g (82%) 3 als klare farblose Flüssigkeit über. GC (5% Carbowax 20 M, 80–220°, 4°/Min.): 97% 3. IR (Film): 2175m (C $\equiv$ C), 1251s (SiMe<sub>3</sub>), 1090s (C $\equiv$ C). 1H-NMR (60 MHz, CDCl<sub>3</sub>): 0,18 (s, 18H, 2 SiMe<sub>3</sub>); 4,23 (s, 4H, 2 CH<sub>2</sub>). MS (A): 223 (2, m + CH<sub>3</sub>), 193 (25), 83 (17), 73 (100), 43 (15). Anal. ber. für C<sub>12</sub>H<sub>22</sub>OSi<sub>2</sub> (238,48): C 60,44, H 9,30; gef.: C 60,66, H 9,39.
- 3. 6-Methyl-4,7-bis(trimethylsilyl)-1,3-dihydrofuro[3,4-c]pyridin (4) und 4,5,7-Tris(trimethylsilyl)-6-[(3-(trimethylsilyl)-2-propinyl)oxy]methyl-1,3-dihydroisobenzofuran (10). Unter N<sub>2</sub> wurden 1000 g (4,19 mol) 3 und 2000 ml (38,0 mol) MeCN (Rathburn Chemicals, getrocknet über Molekularsieb 3 Å) im Autoklaven vorgelegt.

Es sei darauf hingewiesen, dass 2 sehr leicht Peroxide bildet. Deshalb muss 2 unter N<sub>2</sub> in brauner Flasche unter Zugabe von je 0,1% BHA und BHT aufbewahrt werden.

Nach Zugabe von 39,6 g (0,21 mol) [CoCp<sub>2</sub>] (Emser-Werke HK-Co-4) und 2mal Spülen mit N<sub>2</sub> wurde der Druck auf 100 bar N<sub>2</sub> eingestellt und 1 Std. bei 145° gerührt<sup>8</sup>). Das Gemisch wurde i. RV. eingedampft und das zurückbleibende schwarze Öl (1134 g) an 5,6 kg Aluminiumoxid (basisch; CAMAG 5016-A) mit Et<sub>2</sub>O/Hexan 1:10 chromatographiert. Es fielen 849,6 g (73%) 4 als rotbraunes Öl an. GC (3% SE 30, 100–220°): 92% 4. Eine analysenreine Probe von 4 wurde durch Kugelrohrdestillation bei 215–250°/0,02 Torr als farbloses kristallisierendes Öl gewonnen, Schmp. 36–37°. IR (KBr): 1540–1551m (Heteroaromat), 1255s (SiMe<sub>3</sub>), 1068s (C-O-C).  $^{1}$ H-NMR (60 MHz, CDCl<sub>3</sub>): 0,28, 0,35 (2s, 18H, 2 SiMe<sub>3</sub>); 2,70 (s, 3H, CH<sub>3</sub>); 5,07 (s, 4H, CH<sub>2</sub>OCH<sub>2</sub>). MS (B): 279 (11,  $M^{+}$ ), 264 (42), 251 (22), 250 (24), 236 (100), 193 (14), 97 (13), 73 (84). Anal. ber. für C<sub>14</sub>H<sub>25</sub>NOSi<sub>2</sub> (279,53): C 60,16, H 9,02, N 5,01; gef.: C 60,28, H 8,97, N 5,23.

Das Nebenprodukt 10 kristallisierte aus einer Probe des rotbraunen Öls nach 25 Tagen und wurde durch Filtrieren als farbloses Kristallisat vom Schmp. 126° gewonnen (Ausbeute ca. 1%). IR (KBr): 2170 (C $\equiv$ C), 1526 (Aromat), 1265s (SiMe<sub>3</sub>), 1068s (C=O=C).  $^1$ H=NMR (80 MHz, CDCl<sub>3</sub>): 0,18 (s, 9H, SiMe<sub>3</sub>); 0,38 (s, 27H, 3 SiMe<sub>3</sub>); 4,04 (s, 2H, OCH<sub>2</sub>C $\equiv$ ); 4,80 (s, 2H, CH<sub>2</sub>=C(6)); 5,06 (s, 4H, 2H=C(1), 2H=C(3)). MS (B): 461 (2,  $M^+$  = CH<sub>3</sub>), 350 (12), 349 (12), 277 (39), 261 (25), 199 (55), 83 (16), 73 (100). MS (A, CI): 477 (20, ( $M^+$  +H) $^+$ ). Anal. ber. für C<sub>24</sub>H<sub>44</sub>O<sub>2</sub>Si<sub>4</sub> (476,96): C 60,44, H 9,30; gef.: C 60,27, H 9,48.

4. 6-Methyl-7-(trimethylsilyl)-1,3-dihydrofuro[3,4-c]pyridinium-acetat (5) sowie 6-Methyl-7-(trimethylsilyl)-furo[3,4-c]pyridin-3(1H)-on (11) und 6-Methyl-7-(trimethylsilyl)-furo[3,4-c]pyridin-1(3H)-on (12) als Oxidationsprodukte von 5. Zu einer Lösung von 400 g (1,43 mol) 4 in 200 ml Et<sub>2</sub>O wurden 172 g (2,86 mol) AcOH (100%; Merck) innerhalb von 10–15 Min. zugetropft. Nach 6 Std. Rühren bei RT. wurden 200 ml Et<sub>2</sub>O zugegeben und 1 Std. bei 0° gerührt, worauf 5 auskristallisierte. Durch Abfiltrieren, Waschen mit kaltem EtOH (-80°) und Trocknen über Blaugel bei RT. erhielt man 281 g (73%) farbloses 5 vom Schmp. 71–72°. GC (3% SE 30, 100–220°): 99% 5. IR (KBr): 2248–2765m, 1699m (COOH), 1566–1591w (Heteroaromat), 1258m (SiMe<sub>3</sub>), 1066s (C-O-C). ¹H-NMR (60 MHz, CDCl<sub>3</sub>): 0,37 (s, 9H, SiMe<sub>3</sub>); 2,08 (s, 3H, Ac); 2,70 (s, 3H, CH<sub>3</sub>); 5,08 (s, 4H, 2H-C(1), 2H-C(3)); 8,40 (s, 1H, H-C(4)); 10,90 (s, 1H, COOH). MS (A): 207 (87, M †), 192 (100), 164 (20), 125 (22), 73 (49). Anal. ber. für C<sub>13</sub>H<sub>21</sub>NO<sub>3</sub>Si (207,35 + 60,05): C 58,39, H 7,92, N 5,24; gef.: C 58,34, H 8,05, N 5,21.

Die Verbindung 5 muss bei mehrwöchiger Lagerung unter strengem Luftausschluss (N<sub>2</sub>-Atmosphäre) aufbewahrt werden, andernfalls tritt Umsetzung mit Luft-O<sub>2</sub> ein, wobei die isomeren Lactone 11 und 12 entstehen. Die Isolierung dieser Oxidationsprodukte erfolgte durch präp. HPLC in 2 hintereinandergeschalteten Säulen (Kieselgel 500, Säulen 57 × 300 mm, *Waters*) mit MeOH/CHCl<sub>3</sub>/Hexan 2,5:23:74,5. *Daten von* 11: Schmp. 96-97°9). IR (KBr): 1772s (5-Ring-Lacton), 1590s, 1573m (Heteroaromat), 1253s (SiMe<sub>3</sub>). <sup>1</sup>H-NMR (60 MHz, CDCl<sub>3</sub>): 0,47 (s, 9H, SiMe<sub>3</sub>); 2,82 (s, 3H, CH<sub>3</sub>); 5,33 (s, 2H, 2H-C(1)); 9,02 (s, 1H, H-C(4)). MS (B): 221 (10,  $M^+$ ), 206 (100,  $M^+$  -CH<sub>3</sub>), 192 (38), 178 (15), 73 (15). Anal. ber. für C<sub>11</sub>H<sub>15</sub>NO<sub>2</sub>Si (221,33): C 59,69, H 6,83, N 6,33; gef.: C 59,99, H 6,91, N 6,38.

Daten von 12: Schmp.  $67^{\circ}$ . IR (KBr): 1753s (5-Ring-Lacton), 1564m (Heteroaromat), 1248s (SiMe<sub>3</sub>). <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 0,48 (s, 9H, SiMe<sub>3</sub>); 2,75 (br., weitreichende Koppl., 3H, CH<sub>3</sub>); 5,26 (br., weitreichende Koppl., 2H, 2H-C(3)); 8,65 (br., weitreichende Koppl., 1H, H-C(4)). MS (B): 220 (0,5,  $M^+$  -H), 206 (100,  $M^+$  -CH<sub>3</sub>), 192 (10), 135 (24). Anal. ber. für C<sub>11</sub>H<sub>15</sub>NO<sub>2</sub>Si (221,33): C 59,69, H 6,83, N 6,33; gef.: C 59,52, H 6,67, N 6,30.

5. 6-Methyl-7-(trimethylsilyl)-1,3-dihydrofuro[3,4-c]pyridin-5-oxid (6). Zu einer Lösung von 100 g (0,374 mol) 5 in 300 ml CH<sub>2</sub>Cl<sub>2</sub> wurde bei 0° unter Rühren eine Lösung von 86,3 g (0,500 mol) m-Chlorperbenzoesäure (90%, Fluka) in 1000 ml CH<sub>2</sub>Cl<sub>2</sub> innert 50 Min. zugetropft und dann 4 Std. bei RT. gerührt. Mit 35 ml 10% NaHSO<sub>3</sub> wurde die überschüssige Persäure reduziert. Das Reaktionsgut wurde zuerst mit 200 ml 1n NaCl, dann mit 200 ml 5% NaOAc und zuletzt 3mal mit je 200 ml ges. NaCl gewaschen. Die vereinigten H<sub>2</sub>O-Phasen wurden mit 200 ml CH<sub>2</sub>Cl<sub>2</sub> extrahiert. Nach Trocknen und Eindampfen i. RV. fielen 165,6 gelbes Öl an (enthielt 6 und m-Chlorbenzoesäure), das an 1680 g Aluminiumoxid (neutral; CAMAG 507-C) mit CHCl<sub>3</sub>/MeOH 98:2 chromatographiert wurde, was 88,9 g rohes 6 als gelbes Kristallisat lieferte. Ein analoger Ansatz mit 130 g (0,486 mol) 5 ergab 94,3 g rohes 6. Durch Umkristallisation der vereinigten Rohprodukte aus Cyclohexan erhielt man 131,6 g (69%) reines farbloses 6 Schmp. 100–102°<sup>10</sup>). DC (CHCl<sub>3</sub>/MeOH 5:1): R<sub>1</sub>(5) 0,69; R<sub>1</sub>(6) 0,58.

Bie Reaktion tritt auch im geschlossenen Gefäss (Bombenrohr, Labor-Autoklav) ohne zusätzlichen N<sub>2</sub>-Druck, nur unter dem Dampfdruck der Reagenzien ein. Allerdings ist die starke Exothermie der Reaktion und der damit verbundene Druckanstieg zu beachten.

<sup>9)</sup> H<sub>2</sub>O-Gehalt 0,21 % (*Karl-Fischer*-Bestimmung).

 $<sup>^{10})~</sup>H_2\text{O-Gehalt 0,29\,\%}$  (Karl-Fischer-Bestimmung).

- IR (KBr): 1540w (Heteroaromat), 1216-1249-1281s (SiMe<sub>3</sub>,  $^+N-O^-$ ), 1093s, 1062s (C-O-C).  $^1H-NMR$  (60 MHz, CDCl<sub>3</sub>): 0,40 (s, 9H, SiMe<sub>3</sub>); 2,65 (s, 3H, CH<sub>3</sub>); 5,05 (s, 4H, 2H-C(1), 2H-C(3)); 8,22 (s, 1H, H-C(4)). MS (A): 223 (10,  $M^+$ ), 207 (36), 206 (40), 192 (100), 73 (85). Anal. ber. für  $C_{11}H_{17}NO_2Si$  (223,35): C 59,15, H 7,67, N 6,27; gef.: C 59,23, H 7,70, N 6,22.
- 6. 7-Hydroxy-6-methyl-1,3-dihydrofuro[3,4-c]pyridin (7) und 6-Hydroxymethyl-7-(trimethylsilyl)-1,3-dihydrofuro[3,4-c]pyridin (13). Eine Suspension von 70,0 g (0,313 mol) 6 in 350 ml Et<sub>3</sub>N wurde mit 70 ml (0,741 mol) Ac<sub>2</sub>O versetzt und 2 Std. unter Rückfluss (93°) erhitzt. Nun wurde das Lösungsmittel i. RV. abdestilliert, zuerst im Wasserstrahlpumpen-, dann im Ölpumpenvakuum (50°). Die 85 g braunes Öl wurden mit 157 ml 2N HCl versetzt und 75 Min. unter Rückfluss erhitzt. Nach Abkühlen auf RT. wurden 85 ml 7,5N NaOH und 32 ml 3N NaOH (total 0,734 mol NaOH) zugegeben (pH 12,7). Die basische wässr. Lösung wurde 3mal mit 500 ml CH<sub>2</sub>Cl<sub>2</sub> extrahiert und die vereinigte org. Phase noch 3mal mit 150 ml H<sub>2</sub>O extrahiert. Zur Aufarbeitung von 13 wurde die org. Phase getrocknet und i. RV. eingedampft. Das rohe 13 (50,5 g) wurde an Aluminiumoxid (neutral; CAMAG 507-C) mit AcOEt/CHCl<sub>3</sub>/MeOH 90:5:10 chromatographiert, was 5,4 g (8%) reines, gelbes 13 ergab, Schmp. 83–85°. Durch Umkristallisation aus MeOH wurde eine anal. Probe des reinen farblosen 13 vom Schmp. 89° gewonnen. IR (KBr): 1600m, 1564m (Heteroaromat), 1254s (SiMe<sub>3</sub>), 1060s, 1050s (Alkohol-II, C—O—C). <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 0,36 (s, 9H, SiMe<sub>3</sub>); 4,45 (br. s, 1H, CH<sub>2</sub>OH); 4,77 (s, 2H, CH<sub>2</sub>OH); 5,10 (s, 4H, 2H—C(1), 2H—C(3)); 8,43 (s, 1H, H—C(4)). MS (B): 223 (14, M<sup>+</sup>), 208 (100), 192 (99), 190 (25), 75 (67), 73 (21). Anal. ber. für C<sub>11</sub>H<sub>17</sub>NO<sub>2</sub>Si (223,35): C 59,15, H 7,67, N 6,27; geft.: C 58,83, H 7,83, N 6,22.

Zur Aufarbeitung von 7 wurde die H<sub>2</sub>O-Phase mit 2N HCl neutralisiert (pH 7,0), mit 500 ml Pyridin versetzt und alles i. RV. eingedampft. Der zurückbleibende dunkelbraune Festkörper (105,6 g) wurde in 500 ml Pyridin gelöst, mit 53 g wasserfreiem Na<sub>2</sub>SO<sub>4</sub> versetzt und 18 Std. bei RT. gerührt. Nach Filtration durch ein Cellulosefilter (Hyflo Super Cel) und Eindampfen i. RV. erhielt man 31,2 g schwarzes Öl, das in 450 ml abs. EtOH gelöst und mit 13 g Entfärbungskohle (Norit SX-3) entfärbt wurde. Man filtrierte durch Hyflo Super Cel und dampfte das Lösungsmittel i. RV. ab. Das verbleibende rohe 7 wurde nochmals aus abs. EtOH umkristallisiert, worauf 8,00 g (17%) reines, farbloses 7 erhalten wurden, Schmp. 252° ([9]: 250–252°). Die Substanz war identisch mit einer nach [9] hergestellten Vergleichsprobe. <sup>1</sup>H-NMR (80 MHz, (D<sub>6</sub>)DMSO): 2,36 (s, 3H, CH<sub>3</sub>); 4,98 (s, 4H, 2H–C(1), 2H–C(3)); 7,89 (s, 1H, H–C(4)), 9,5 (br. s, 1H, OH). Anal. ber. für C<sub>8</sub>H<sub>9</sub>NO<sub>2</sub> (151.16): C 63,56, H 6,00, N 9,27; gef.: C 63,13, H 6,13, N 9,00.

- 7. 4,5-Bis(brommethyl)-3-hydroxy-2-methylpyridinium-bromid (8) [8]. Im Kolben mit aufgesetzter Destillationsbrücke wurden 1,70 g (11,2 mmol) 7 mit 28 ml HBr (48% in H<sub>2</sub>O; Fluka) zum Sieden erhitzt und 14 ml Destillat aufgefangen. Durch Abkühlen auf 10°, Abfiltrieren und Trocknen erhielt man 3,43 g (81%) 8 als farbloses Kristallisat, Schmp. 226–229° ([8]: 228,5°).
- 8. Essigsäure-[4,5-bis(acetoxymethyl)-2-methylpyridin-3-yl]ester (9) [9]. Eine Lösung von 3,43 g (9,12 mmol) 8 in 10 ml DMF wurde mit 1,05 ml (11,1 mmol) Ac<sub>2</sub>O versetzt und 1 Std. bei 55° gerührt. Zur entstandenen Suspension gab man 3,04 g (37,1 mmol) wasserfreies AcONa und rührte 2,5 Std. bei 85°. Nach dem Abkühlen auf 10° wurde das ausgefallene NaBr abfiltriert und das rote Filtrat i.RV. eingedampft. Der Rückstand (teils fest, teils flüssig) wurde 3mal mit 50 ml siedendem Et<sub>2</sub>O extrahiert, die vereinigten Extrakte i.RV. eingedampft und das verbleibende rote Öl bei 160°/ca. 0,015 Torr destilliert, wobei 2,27 g (84%) 9 als klares, farbloses Öl anfielen. Die Substanz war identisch mit einer durch Acetylierung von Pyridoxin hergestellten Vergleichsprobe.
- 9. 3-Hydroxy-4,5-di(hydroxymethyl)-2-methylpyridinium-chlorid (Pyridoxin-hydrochlorid, 1) [9]. Eine Lösung von 2,27 g (7,7 mmol) 9 wurde in 4,3 ml 2n HCl 2 Std. unter Rückfluss erhitzt und i. RV. eingedampft. Das zurückbleibende blassgelbe Kristallisat wurde im Wasserstrahlpumpenvakuum bei 40° über Nacht getrocknet: 1,55 g (98%) 1, Schmp. 202-204° (Zers.; Vergleichsprobe: 207-209° (Zers.)). Umkristallisation aus 99% EtOH und Entfärben mit einer Spatelspitze Aktivkohle (Norit SX-3) ergab 1,24 g (78% bzgl. 9) reines, farbloses 1, Schmp. 205-206° (Zers.), das mit einer Vergleichsprobe identisch war.
- 10. 2-Propinyl-[3-(trimethylsilyl)-2-propinyl]äther (14). Zu einer Lösung von 941 g (10,0 mol) 2 in 5000 ml THF wurden unter Eis/Wasserkühlung 6670 ml (10,0 mol) BuLi (1,5M in Hexan; Metallgesellschaft AG, Frankfurt) innert 2 Std. zugetropft ( $\leq$  30°), dann wurde noch 2 Std. bei RT. gerührt. Nun tropfte man ohne Kühlung eine Lösung von 1087 g (10,0 mol) Me<sub>3</sub>SiCl (Fluka) in 5000 ml THF innert 1½ Std. zu, rührte 4 Std. unter Rückfluss (ca. 55°) und liess das Gemisch über Nacht ruhen. Unter Kühlen und gutem Rühren wurde mit 550 ml H<sub>2</sub>O hydrolysiert und das Gemisch zu 5000 ml ges. NaCl gegossen. Nach Trennen der Phasen wurde die THF-Phase 2mal mit je 3000 ml ges. NaCl sowie mit 1000 ml H<sub>2</sub>O gewaschen, getrocknet und nach Zugabe von je 10 mg BHA und BHT (Fluka) i. RV. eingedampft: 1376 g rotbraune Flüssigkeit. GC (5% Carbowax 20 M, 50-220°): 49% 14, 35% 3, 5% 2. Der Ansatz wurde in gleicher Art noch 2mal wiederholt, und zwar mit 941 g (10,0 mol) 2 und mit 931 g (9,9 mol) 2. So erhielt man total 4096 g Rohprodukt, das durch Fraktionieren an

einer Füllkörperkolonne (*Fenske*-Ringe) in 1825 g (37%) **14** und 1683 g (24%) **3** (GC: 96% **14** bzw. **3**, klare farblose Flüssigkeiten) aufgetrennt wurde<sup>11</sup>). Daten von **14**: Sdp. 73–76°/13 Torr. IR (Film): 3300s ( $\equiv$ CH), 2176m (C $\equiv$ C-Si), 2120w (C $\equiv$ CH), 1254s (SiMe<sub>3</sub>), 1090s (C $\equiv$ O-C). <sup>1</sup>H-NMR(60 MHz, CDCl<sub>3</sub>): 0,18 (s, 9H, SiMe<sub>3</sub>); 2,45 (t, t = 2,0, 1H,  $\equiv$ CH); 4,27 (t, t = 2,0, 2H, OCt = Ct = C-Si), 4,28 (t = CH), 151 (t = CH), 137 (14), 121 (100), 73 (69). MS (A, CI): 184 (34, (t + NH<sub>4</sub>)). Anal. ber. für C<sub>9</sub>H<sub>14</sub>OSi (166,30): C 65,00, H 8,49; gef.: C 65,09, H 8,43.

11. 4-[3-(Trimethylsilyl)-2-propinyl]oxy-2-butinsäure (15). Aus 133,7 g (5,50 mol) Mg-Spänen in 500 ml THF wurde durch Zutropfen von 619,2 g (5,68 mol) EtBr in 1250 ml THF und anschliessendem Erhitzen (1 1/2 Std.) unter Rückfluss (75°) eine Grignard-Lösung hergestellt. Während 90 Min. wurden bei RT. 831,5 g (5,00 mol) 14 (unverdünnt) zugetropft und dazwischen (nach 1/2 der Menge) noch 500 ml THF beigegeben, um das Gemisch homogen und rührbar zu erhalten. Nach vollständiger Zugabe wurde 1 Std. bei 55° gerührt. Nun wurden 1000 ml THF zugegeben und auf -8° abgekühlt. Dann wurde so lange gasförmiges CO<sub>2</sub> (Carba AG; getrocknet mit Molekularsieb 3 Å) eingeleitet, bis keine Wärmeentwicklung mehr feststellbar war. Hierauf wurde noch 1 Std. bei RT. CO<sub>2</sub> eingeleitet. Bei -5° wurden 250 ml H<sub>2</sub>O zugetropft. Mit 1200 ml 12,5% HCl wurde angesäuert (pH 2) und die org. Phase abgetrennt. Die H<sub>2</sub>O-Phase wurde 3mal mit 2000 ml Et<sub>2</sub>O extrahiert und das kombinierte Extrakt nach Trocknen und Zugabe von je 10 mg BHA und BHT (Fluka) i. RV. eingedampft, wobei 992 g (94%) rohes 15 als rote Flüssigkeit anfielen. Zur Reinigung<sup>12</sup>) wurden 634 g Rohprodukt in 3000 ml Et<sub>2</sub>O gelöst und 3mal mit 2000 ml 5% NaHCO<sub>3</sub> extrahiert. Die kombinierten H<sub>2</sub>O-Phasen wurden mit ca. 2000 ml 2N HCl<sup>13</sup>) auf pH 2 eingestellt und 3mal mit 2000 ml Et<sub>2</sub>O extrahiert. Nach Trocknen und Eindampfen i. RV. blieben 496 g (73% bzgl. 14) reines 15 als rötlichgelbe Flüssigkeit zurück. Eine analytische Probe wurde durch Kugelrohrdestillation (150°/0,02 Torr) gereinigt. IR (Film): 3140m, 2613m (OH), 2241m, 2175w (C=C), 1718s (COOH), 1251s (SiMe<sub>3</sub>), 1091s (C-O-C). H-NMR (80 MHz, CDCl<sub>3</sub>): 0,20 (s, 9H, SiMe<sub>3</sub>); 4,29, 4,44 (2s, 4H, CH<sub>2</sub>OCH<sub>2</sub>); 9,04 (s, 1H, COOH). MS (B): 195 (1, M <sup>+</sup> -CH<sub>3</sub>), 151 (12, M <sup>+</sup> –СООН), 136 (15), 125 (20), 121 (100), 93 (27) 83 (31), 73 (73). Anal. ber. für С<sub>10</sub>Н<sub>14</sub>О<sub>3</sub>Si (210,31): С 57,11, Н 6,71; gef.: C 57,25, H 7,15.

12. 4- $\{3$ - $\{Trimethylsilyl\}$ -2- $propinyl\}$ oxy-2-butinsäure-äthylester (16). Eine Lösung von 240 g (1,14 mol) 15 in 880 ml EtOH und 1320 ml Benzol wurde mit 11,3 ml H<sub>2</sub>SO<sub>4</sub> (97%) als Katalysator 20 Std. unter Rückfluss erhitzt. Zur kontinuierlichen Entfernung des Reaktionswassers wurde anstelle eines Rückflusskühlers ein Soxhlet-Extraktor (gefüllt mit 200 g Molekularsieb 3 Å und 100 g wasserfreiem MgSO<sub>4</sub>) aufgesetzt. Die gelbliche Reaktionslösung wurde 3mal mit 500 ml H<sub>2</sub>O, 2mal mit 500 ml 5% NaHCO<sub>3</sub> und 3mal mit 500 ml H<sub>2</sub>O gewaschen. Die vereinigten H<sub>2</sub>O-Phasen wurden 3mal mit 500 ml Benzol gewaschen. Die vereinigten org. Phasen wurden getrocknet und i. RV. eingedampft, wobei 248,1 g rohes 16 als rölliches Öl zurückblieben. Destillation bei 105°/0,02 Torr lieferte 228,3 g (84%) reines 16 als klare, farblose Flüssigkeit. GC (3% SE 30, 100–220°): > 99% 16. IR (Film): 2237m, 2175m (C=C), 1715s (Ester), 1248s (SiMe<sub>3</sub>), 1092s (C-O-C). <sup>1</sup>H-NMR (60 MHz, CDCl<sub>3</sub>): 0,15 (s, 9H, SiMe<sub>3</sub>); 1,30 (t, t) = 7,0, 3H, OCH<sub>2</sub>CH<sub>3</sub>); 4,25 (t), t0, t1 = 7,0, 2H, OCH<sub>2</sub>CH<sub>3</sub>); 4,25, 4,37 (2s, 4H, CH<sub>2</sub>OCH<sub>2</sub>). MS (B): 238 (0,5, t1 + 7,23 (36), 195 (30), 167 (19), 149 (12), 121 (21), 73 (100). Anal. ber. für C<sub>12</sub>H<sub>18</sub>O<sub>3</sub>Si (238,36): C 60,47, H 7,61; gef.: C 59,97, H 7,54.

13. 6-Methyl-4-(trimethylsilyl)-1,3-dihydrofuro[3,4-c]pyridin-7-carbonsäure-äthylester (17) und 6-Methyl-7-(trimethylsilyl)-1,3-dihydrofuro[3,4-c]pyridin-4-carbonsäure-äthylester (22). Im Autoklaven wurden unter N<sub>2</sub> 125 g (0,524 mol) 16 in 3000 ml MeCN (Rathburn-Chemicals; getrocknet über Molekularsieb 3 Å) vorgelegt und 9,52 g (6,75 ml; 52,9 mmol) [CoCp(CO)<sub>2</sub>] (Emser Werke, HK-Co-17) zudosiert. Nach 2mal Spülen mit N<sub>2</sub> wurde der Druck auf 50 bar N<sub>2</sub> eingestellt<sup>14</sup>) und 2 Std. bei 145° gerührt (Kontrolle des Reaktionsgutes durch GC (3% SE 30, 100-220°)). Nach Eindampfen i.RV. blieben 147,2 g rohes 17 als schwarzes Öl zurück (GC: 79% 17, 5% 22, 2% 16). Dieses Material wurde direkt für die nächste Stufe verwendet. Analysenreine Proben von 17 und 22 wurden mittels Chromatographie an Aluminiumoxid (neutral, CAMAG 507-C) mit AcOEt/Toluol 1:3 und anschliessender Kugelrohrdestillation gewonnen. 17: Destilliert bei 210°/0,02 Torr, Schmp. 44-45°15). IR (KBr): 1728s, 1710s (Ester), 1573m, 1550m (Heteroaromat), 1248s (SiMe<sub>3</sub>), 1063s (C-O-C). <sup>1</sup>H-

<sup>11)</sup> Zur Verhinderung der Peroxidbildung wurde 14 mit je 0,1 % BHA und BHT stabilisiert. Bei 3 konnten wir keine Peroxidbildung beobachten.

<sup>12)</sup> Die Verwendung des Rohproduktes ohne Reinigung führt in der nächsten Stufe zu sehr schlechten Ausbeuten

<sup>13)</sup> Bei Verwendung von konz. HCl tritt wegen zu hoher lokaler Acidität teilweise Desilylierung ein.

<sup>14)</sup> Die Reaktion verläuft auch im geschlossenen Gefäss, ohne zusätzlichen N<sub>2</sub>-Druck, nur unter dem Dampfdruck der Reagenzien.

<sup>15)</sup> H<sub>2</sub>O-Gehalt 0,43% (Karl-Fischer-Bestimmung).

NMR (60 MHz, CDCl<sub>3</sub>): 0,32 (s, 9H, SiMe<sub>3</sub>); 1,40 (t, J = 7,0, 3H, OCH<sub>2</sub>CH<sub>3</sub>); 2,87 (s, 3H, CH<sub>3</sub>); 4,40 (q, J = 7,0, 2H, OCH<sub>2</sub>CH<sub>3</sub>); 5,15, 5,23 (2s, 4H, 2H–C(1), 2H–C(3)). MS (B): 279 (19, M  $^+$ ), 264 (66), 250 (28), 236 (74), 208 (39), 75 (40), 73 (100). Anal. ber. für C<sub>14</sub>H<sub>21</sub>NO<sub>3</sub>Si (279,41): C 60,18, H 7,58, N 5,01; gef.: C 59,46, H 7,68, N 4,85.

**22**: Destilliert bei 145–155°/0,04 Torr, Schmp. 41°. IR (KBr): 1735s, 1712m (Ester), 1569m (Heteroaromat), 1246s (SiMe<sub>3</sub>), 1063s (C-O-C). <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 0,39 (s, 9H, SiMe<sub>3</sub>); 1,48 (t, J = 7,0, 3H, OCH<sub>2</sub>CH<sub>3</sub>); 2,79 (s, 3H, CH<sub>3</sub>); 4,49 (g, J = 7,0, 2H, OCH<sub>2</sub>CH<sub>3</sub>); 5,13, 5,34 (2m, 4H, 2H-C(1), 2H-C(3)). MS (B): 279 (36, M <sup>+</sup>), 250 (29), 221 (16), 207 (94), 179 (100), 75 (25), 73 (69). Anal. ber. für C<sub>14</sub>H<sub>21</sub>NO<sub>3</sub>Si (279,41): C 60,18, H 7,58, N 5,01; gef.: C 60,25, H 7,63, N 4,84.

14. 6-Methyl-1,3-dihydrofuro[3,4-c]pyridin-7-carbonsäure-äthylester (18). Eine Lösung von 147,2 g (max. 0,524 mol) rohem 17 in 800 ml EtOH wurde nach Zugabe von 2,13 g (14,0 mmol) CsF (Fluka) 87 Std. bei RT. gerührt. Nach Eindampfen i. RV. wurde an 2 kg Kieselgel mit AcOEt/Et<sub>2</sub>O 3:1 chromatographiert. Dabei wurden 73,6 g (68% bzgl. 16) reines, farbloses 18 vom Schmp. 76–77° erhalten. GC (3% SE 30, 100–220°): 99% 18. IR (KBr): 1719s (Ester), 1595m, 1571s, 1476m (Heteroaromat), 1145s (C-O-C). <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 1,41 (t, J = 7,0, 3H, OCH<sub>2</sub>CH<sub>3</sub>); 2,84 (s, 3H, CH<sub>3</sub>); 4,36 (q, J = 7,0, 2H, OCH<sub>2</sub>CH<sub>3</sub>); 5,11, 5,24 (2m, 4H, 2H-C(1), 2H-C(3)); 8,45 (s, 1H, H-C(4)). MS (B): 207 (25, M<sup>+</sup>), 178 (100), 161 (32), 133 (35), 104 (20), 77 (22). Anal. ber. für C<sub>11</sub>H<sub>13</sub>NO<sub>3</sub> (207,23): C 63,76, H 6,32, N 6,76; gef.: C 63,79, H 6,48, N 6,37.

15. 6-Methyl-1,3-dihydrofuro[3,4-c]pyridin-7-carbonsäure (19). Zu einer Lösung von 40 g (0,193 mol) 18 in 480 ml EtOH wurden 76,4 g (1,157 mol) KOH (85%; Merck; Plätzchen pulverisiert im Mörser) in einer Portion zugegeben und kräftig gerührt. Nachdem die Temp. auf 42° angestiegen war, wurde im Wasserbad auf RT. gekühlt und 5 Std. weitergerührt. Das ausgefallene Kaliumsalz von 19 wurde abfiltriert, 2mal mit 50 ml Et<sub>2</sub>O gewaschen und zur Freisetzung der Säure in 300 ml H<sub>2</sub>O gelöst, tropfenweise mit 116 ml 2N HCl (0,23 mol) versetzt<sup>16</sup>) und 1 Std. bei RT. gerührt. Das Kristallisat wurde abfiltriert, aus H<sub>2</sub>O umkristallisiert und zuerst 2 Tage bei 55°/10 Torr, dann mehrere Tage im Exsikkator (Silicagel blau) getrocknet: 22,5 g (65%) farbloses 19 vom Schmp. 217–218°<sup>17</sup>); die stabile Form ist das Monohydrat. IR (KBr): 2400w, 1732m (COOH), 1613m, 1575m (Heteroaromat), 1061s (C-O-C). <sup>1</sup>H-NMR (90 MHz, (D<sub>6</sub>)DMSO): 2,72 (s, 3H, CH<sub>3</sub>); 5,06, 5,14 (2d, J=2, 4H, 2H-C(1), 2H-C(3)); 8,53 (s, 1H, H-C(4)). MS (A): 179 (89,  $M^+$ ), 161 (100), 150 (15), 133 (76), 104 (24), 77 (32). Anal. ber. für C<sub>9</sub>H<sub>9</sub>NO<sub>3</sub> (179,18): C 60,33, H 5,06, N 7,82; gef.: C 60,09, H 5,08, N 7,85.

16. 6-Methyl-1,3-dihydrofuro[3,4-c]pyridin-7-carbaminsäure-(tert-butyl)ester (20) und 1,3-Bis(6-methyl-1,3-dihydrofuro[3,4-c]pyridin-7-yl)harnstoff (23) durch modifizierte Curtius-Umlagerung (vgl. [10]). Zu einer Lösung von 16,0 g (89,3 mmol) reinem wasserfreiem 19 in 160 ml t-BuOH (Fluka) wurden 9,06 g (89,5 mmol) Et<sub>3</sub>N zugegeben und die entstehende Suspension unter gutem Rühren auf 30° erwärmt. Langsam wurden 24,6 g (89,3 mmol) Diphenoxyphosyhorylazid (Fluka) zugetropft. Die entstandene gelbe Lösung wurde 24 Std. unter Rückfluss (83°) erhitzt. Nach Eindampfen i. RV. wurde der Rückstand in 500 ml Benzol gelöst und 2mal mit je 125 ml 5% Citronensäure-Lösung, 2mal mit je 125 ml ges. NaHCO<sub>3</sub> und zuletzt 2mal mit je 125 ml ges. NaCl extrahiert. Die vereinigten H<sub>2</sub>O-Phasen wurden 2mal mit 100 ml Benzol ausgeschüttelt und die vereinigten org. Phasen getrocknet, i. RV. eingedampft und im Exsikkator getrocknet: 15,24 g (68%) 20 (weisses Pulver), Schmp. 118–119°. GC (3% SE 30, 100–220°): 95% 20. IR (KBr): 3236s (NH), 1698s, 1677s, 1537s (Carbamat), 1611m, 1490m (Heteroaromat). <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 1,50 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>); 2,50 (s, 3H, CH<sub>3</sub>); 5,07 (m, 4H, 2H-C(1), 2H-C(3)); 6,33 (br. s, 1H, NH); 8,20 (s, 1H, H-C(4)). MS (A): 250 (4, M +), 194 (30), 150 (25), 121 (11), 94 (15), 57 (100). Anal. ber. für C<sub>13</sub>H<sub>18</sub>N<sub>2</sub>O<sub>3</sub> (250,30): C 62,38, H 7,25, N 11,19; gef.: C 62,22, H 7,34, N 10,81.

Beim Stehenlassen der vereinigten  $H_2O$ -Phasen aus der Extraktion von **20** kristallisierten 3,6 g (12%) **23** vom Schmp. 287° aus. Eine analysenreine Probe erhielt man durch Umkristallisation aus MeOH, Schmp. 308-309°. IR (KBr): 3282s (NH), 1640s (NHCONH), 1611s, 1567s, 1495m (Heteroaromat), 1054s (C-O-C). <sup>1</sup>H-NMR (80 MHz, (D<sub>6</sub>)DMSO): 2,48 (s, 3H, CH<sub>3</sub>); 4,95, 4,99 (2d, J = 2,0, 4H, 2H-C(1), 2H-C(3)); 8,19 (s, 1H, H-C(4)); 8,34 (s, 1H, NH). MS (C): 326 (32, M +), 177 (58), 176 (45), 150 (92), 149 (37), 122 (100), 121 (56). Anal. ber. für C<sub>17</sub>H<sub>18</sub>N<sub>4</sub>O<sub>3</sub> (326,36): C 62,57, H 5,56, N 17,17; gef.: C 62,34, H 5,45, N 17,27.

17. 7-Amino-6-methyl-1,3-dihydrofuro[3,4-c]pyridin-monohydrochlorid (21). Zu einer Lösung von 4,0 g (16,0 mmol) 20 in 50 ml EtOH wurden 8,0 ml 37% HCl zugegeben, worauf rasch 20 ·HCl ausfiel. Durch Erhitzen unter Rückfluss während 2 Std. bildete sich eine klare gelbe Lösung, die auf 0° abgekühlt, mit 25 ml Et<sub>2</sub>O versetzt und 15 Min. in der Kälte gerührt wurde. Das ausgefallene Kristallisat wurde abfiltriert, 2mal mit je 10

<sup>&</sup>lt;sup>16</sup>) Der pH-Wert sank von > 11 auf 5,5.

<sup>&</sup>lt;sup>17</sup>) H<sub>2</sub>O-Gehalt 7,59% (Karl-Fischer-Bestimmung).

ml Et<sub>2</sub>O gewaschen und im Exsikkator (Silicagel blau) getrocknet: 2,65 g (81%) reines  $21 \cdot H_2O$  als weisses Pulver, Schmp. 278°. IR (KBr): 3412, 3324, 3273, 3226s (NH<sub>2</sub>); 2773, 2730, 2691s (NH<sup>+</sup>); 1647s, 1615m, 1546s (Heteroaromat); 1043s (C-O-C). <sup>1</sup>H $\cdot$ NMR (80 MHz, (D<sub>6</sub>)DMSO): 2,53 (s, 3H, CH<sub>3</sub>); 5,03 (s, 4H, 2H-C(1), 2H-C(3)); 6,4 (br., NH<sub>2</sub>, HCl, H<sub>2</sub>O); 7,86 (s, 1H, H-C(4)). MS (C): 150 (100, M<sup>+</sup>), 149 (25), 122 (25), 121 (68), 94 (25), 36 (34). Anal. ber. für C<sub>8</sub>H<sub>11</sub>ClN<sub>2</sub>O $\cdot$ H<sub>2</sub>O (204,66): C 46,95, H 6,40, N 13,69; gef.: C 46,99, H 6,42, N 13,66.

18. 7-Hydroxy-6-methyl-1,3-dihydrofuro[3,4-c]pyridin (7) und 7-Chlor-6-methyl-1,3-dihydrofuro[3,4-c]pyridin (24). Bei 90-95° wurden 5,0 g (20,0 mmol) 21 in 75 ml 12,5% HCl 2 Std. gerührt. Bei dieser Temp. wurde eine Lösung von 1,66 g (24,1 mmol) NaNO<sub>2</sub> in 28 ml H<sub>2</sub>O innert 40 Min. zugetropft und 1 Std. bei 90° gerührt. Nach Eindampfen i. RV. blieben 5,45 g unreine gelbe Kristalle zurück. Durch Auflösen in 1N NaOH und 3mal Ausschütteln mit je 25 ml CH<sub>2</sub>Cl<sub>2</sub> sowie Trocknen und Eindampfen der org. Phase wurden 0,76 g (22%) 24 als gelbe Kristalle isoliert, Schmp. 77-78°<sup>18</sup>). IR (KBr): 1608m (Heteroaromat), 1154s, 1044s (C-O-C). <sup>1</sup>H-NMR (60 MHz, CDCl<sub>3</sub>): 2,67 (s, 3H, CH<sub>3</sub>); 5,17 (m, 4H, 2H-C(1), 2H-C(3)); 8,30 (s, 1H, H-C(4)). MS (C): 169 (90, M +, Cl), 168 (78, Cl), 141 (100, Cl), 140 (64, Cl), 106 (57), 77 (63), 51 (45). Anal. ber. für C<sub>8</sub>H<sub>8</sub>CINO (169,61): C 56,65, H 4,75, N 8,26, Cl 20,90; gef.: C 57,41, H 4,88, N 8,19, Cl 19,27.

Die H<sub>2</sub>O-Phase wurde mit 11,65 ml 12,5% HCl neutralisiert und i.RV. zur Trockne eingedampft. Der Rückstand wurde in 100 ml EtOH gelöst, mit 2,5 g Aktivkohle (*Norit SX-3*) entfärbt, durch *Hyflo Super Cel* filtriert und das Filtrat i.RV. eingedampft, wobei 2,17 g (72%) rohes 7 als beigefarbenes Pulver zurückblieben. Durch Kristallisation aus 50 ml EtOH wurden 1,3 g (43%) reines, farbloses 7 erhalten, Schmp. 254–256°. Die Verbindung war identisch mit der unter 6 beschriebenen Probe.

### LITERATURVERZEICHNIS

- [1] R.L. Funk & K.P.C. Vollhardt, J. Am. Chem. Soc. 102, 5245 (1980).
- [2] K.P.C. Vollhardt, Acc. Chem. Res. 10, 1 (1977).
- [3] Y. Wakatsuki & H. Yamazaki, Synthesis 1976, 26.
- [4] H. Bönnemann, Angew. Chem. 90, 517 (1978).
- [5] A. Naiman & K. P. C. Vollhardt, Angew. Chem. 89, 758 (1977).
- [6] J.P. Guermont & I. Marszak, C.R. Hebd. Séances Acad. Sci. 235, 252 (1952).
- [7] P. W. Ford & J. M. Swan, Aust. J. Chem. 18, 867 (1965).
- [8] S. A. Harris & K. Folkers, J. Am. Chem. Soc. 61, 3307 (1939).
- [9] W. Böll & H. König, Liebigs Ann. Chem. 1979, 1657.
- [10] T. Shioiri, K. Ninomiya & S. Yamada, J. Am. Chem. Soc. 94, 6203 (1972).
- [11] H. König & W. Böll, Chemiker Zeitung 1976, 105.

<sup>&</sup>lt;sup>18</sup>) H<sub>2</sub>O-Gehalt 0,49% (Karl-Fischer-Bestimmung).